Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 5429-5443, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439270

RESUMO

Brilliant colors in nature arise from the interference of light with periodic nanostructures resulting in structural color. While such biological photonic structures have long attracted interest in insects and plants, they are little known in other groups of organisms. Unexpected in the kingdom of Amoebozoa, which assembles unicellular organisms, structural colors were observed in myxomycetes, an evolutionary group of amoebae forming macroscopic, fungal-like structures. Previous work related the sparkling appearance of Diachea leucopodia to thin film interference. Using optical and ultrastructural characterization, we here investigated the occurrence of structural color across 22 species representing two major evolutionary clades of myxomycetes including 14 genera. All investigated species showed thin film interference at the peridium, producing colors with hues distributed throughout the visible range that were altered by pigmentary absorption. A white reflective layer of densely packed calcium-rich shells is observed in a compound peridium in Metatrichia vesparium, whose formation and function are still unknown. These results raise interesting questions on the biological relevance of thin film structural colors in myxomycetes, suggesting they may be a by-product of their reproductive cycle.


Assuntos
Amebozoários , Mixomicetos , Nanoestruturas , Cálcio , Fótons
2.
Soft Matter ; 20(11): 2509-2517, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38389437

RESUMO

While artificial photonic materials are typically highly ordered, photonic structures in many species of birds and insects do not possess a long-range order. Studying their order-disorder interplay sheds light on the origin of the photonic band gap. Here, we investigated the scale morphology of the Anoplophora graafi longhorn beetle. Combining small-angle X-ray scattering and slice-and-view FIB-SEM tomography with molecular dynamics and optical simulations, we characterised the chitin sphere assemblies within blue and green A. graafi scales. The low volume fraction of spheres and the number of their nearest neighbours are incompatible with any known close-packed sphere morphology. A short-range diamond lattice with long-range disorder best describes the sphere assembly, which will inspire the development of new colloid-based photonic materials.


Assuntos
Besouros , Animais , Besouros/química , Fótons
3.
Small ; : e2310193, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366281

RESUMO

Thermochromic materials have been widely investigated due to their relevance in technological applications, including anti-counterfeiting materials, fashion accessories, displays, and temperature sensors. While many organisms exhibit color changes, few studies have explored the potential of the responsive natural materials for temperature sensing, especially given the often limited and irreversible nature of these changes in live specimens. Here, it is shown that the hindwings of the blue-winged grasshopper Coloracris azureus can act as a reversible, power-free bio-thermometer, transitioning from blue to purple/red in a 30-100°C temperature range. Using microspectrophotometry, light microscopy and Raman microscopy, it is found that the blue color of the wings originates from pigmentary coloration, based on a complex of astaxanthin and proteins. The thermochromic shift from blue to red, induced by a temperature increase, is attributed to a denaturation of this carotenoprotein complex, upon which astaxanthin is released. This process is reversible upon a subsequent temperature decrease. The color changes are both swift and consistent upon temperature change, making the grasshopper's wings suitable as direct visual sensors on thermally dynamic, curved surfaces. The potential possibilities of sustainable, power-free temperature sensors or microthermometers based on biomaterials are demonstrated.

4.
ACS Appl Mater Interfaces ; 15(50): 57981-57991, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989271

RESUMO

Block copolymers (BCPs) are particularly effective in creating soft nanostructured templates for transferring complex 3D network structures into inorganic materials that are difficult to fabricate by other methods. However, achieving control of the local ordering within these 3D networks over large areas remains a significant obstacle to advancing material properties. Here, we address this challenge by directing the self-assembly of a 3D alternating diamond morphology by solvent vapor annealing of a triblock terpolymer film on a chemically patterned substrate. The hexagonal substrate patterns were designed to match a (111) plane of the diamond lattice. Commensurability between the sparse substrate pattern and the BCP lattice produced a uniformly ordered diamond network within the polymer film, as confirmed by a combination of atomic force microscopy and cross-sectional imaging using focused ion beam scanning electron microscopy. The successful replication of the complex and well-ordered 3D network structure in gold promises to advance optical metamaterials and has potential applications in nanophotonics.

5.
Soft Matter ; 19(40): 7717-7723, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37789800

RESUMO

Color can originate from wavelength-dependence in the absorption of pigments or the scattering of nanostructures. While synthetic colors are dominated by the former, vivid structural colors found in nature have inspired much research on the latter. However, many of the most vibrant colors in nature involve the interactions of structure and pigment. Here, we demonstrate that pigment can be exploited to efficiently create bright structural color at wavelengths outside its absorption band. We created pigment-enhanced Bragg reflectors by sequentially spin-coating layers of poly-vinyl alcohol (PVA) and polystyrene (PS) loaded with ß-carotene (BC). With only 10 double layers, we achieved a peak reflectance over 0.8 at 550 nm and normal incidence. A pigment-free multilayer made of the same materials would require 25 double layers to achieve the same reflectance. Further, pigment loading suppressed the Bragg reflector's characteristic iridescence. Using numerical simulations, we further show that similar pigment loadings could significantly expand the gamut of non-iridescent colors addressable by photonic glasses.

6.
Adv Sci (Weinh) ; 10(13): e2206416, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36935363

RESUMO

Mechanochromic materials alter their color in response to mechanical force and are useful for both fundamental studies and practical applications. Several approaches are used to render polymers mechanochromic, but they generally suffer from limitations in sensing range, capacity to provide quantitative information, and their capability to enable broad and simple implementation. Here, is it reported that these problems can be overcome by combining photonic structures, which alter their reflection upon deformation, with covalent mechanophores, whose spectral properties change upon mechanically induced bond scission, in hierarchically structured mechanochromic pigments. This is achieved by synthesizing microspheres consisting of an elastic polymer with spiropyran-based cross-links and non-close-packed silica nanoparticles. A strain of less than 1% can be detected in a shift of the reflection band from the photonic structure, while the onset strain for the conversion of the spiropyran into fluorescent merocyanine ranges from 30% to 70%, creating a broad strain detection range. The two responses are tailorable and synergistic, permitting the activation strain for the mechanophore response to be tuned. The mechano-sensing photonic pigments are demonstrated to be readily incorporated into different polymeric materials of interest and quantitatively probe spatially heterogeneous deformations over a large strain range.

7.
Small ; 19(6): e2205438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464635

RESUMO

Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20-150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.

8.
Adv Sci (Weinh) ; 9(33): e2203371, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36251923

RESUMO

The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial. Correlating high-resolution quantitative refractive index (RI) mapping and structural analysis, it is demonstrated how gradients of RI in the cornea stem from structural and compositional gradients in the cornea. In particular, these RI variations result from the chitin-protein fibers architecture, heterogeneity in protein composition, and bromine doping, as well as spatial variation in water content resulting from matrix cross-linking on the one hand and cuticle porosity on the other hand. Combining the realistic cornea structure and measured RI gradients with full-wave optical modeling and ray tracing, it is revealed that the light collection mechanism switches from refraction-based graded index (GRIN) optics at normal light incidence to combined GRIN and total internal reflection mechanism at high incident angles. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle.


Assuntos
Caranguejos Ferradura , Proteínas , Animais , Caranguejos Ferradura/química , Caranguejos Ferradura/metabolismo , Proteínas/metabolismo , Células Fotorreceptoras , Visão Ocular , Córnea
9.
Bioinspir Biomim ; 17(5)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099911

RESUMO

More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.


Assuntos
Materiais Biomiméticos , Ecossistema , Animais , Humanos , Insetos
11.
Adv Sci (Weinh) ; 9(26): e2202145, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852001

RESUMO

The bright colors of Pachyrhynchus weevils originate from complex dielectric nanostructures within their elytral scales. In contrast to previous work exhibiting highly ordered single-network diamond-type photonic crystals, here, it is shown by combining optical microscopy and spectroscopy measurements with 3D focused ion beam (FIB) tomography that the blue scales of P. congestus mirabilis differ from that of an ordered diamond structure. Through the use of FIB tomography on elytral scales filled with platinum (Pt) by electron beam-assisted deposition, it is revealed that the red scales of this weevil possess a periodic diamond structure, while the network morphology of the blue scales exhibit diamond morphology only on the single scattering unit level with disorder on longer length scales. Full wave simulations performed on the reconstructed volumes indicate that this local order is sufficient to open a partial photonic bandgap even at low dielectric constant contrast between chitin and air in the absence of long-range or translational order. The observation of disordered and ordered photonic crystals within a single organism opens up interesting questions on the cellular origin of coloration and studies on bio-inspired replication of angle-independent colors.


Assuntos
Mirabilis , Nanoestruturas , Gorgulhos , Animais , Diamante , Nanoestruturas/química , Fótons
12.
Small ; 18(20): e2200592, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35426236

RESUMO

The brilliant appearance of Easter Egg weevils, genus Pachyrhynchus (Coleoptera, Curculionidae), originates from complex dielectric nanostructures within their elytral scales and elytra. Previous work, investigating singular members of the Pachyrhynchus showed the presence of either quasi-ordered or ordered 3D photonic crystals based on the single diamond ( Fd3¯m ) symmetry in their scales. However, little is known about the diversity of the structural coloration mechanisms within the family. Here, the optical properties within Pachyrhynchus are investigated by systematically identifying their spectral and structural characteristics. Four principal traits that vary their appearance are identified and the evolutionary history of these traits to identify ecological trends are reconstructed. The results indicate that the coloration mechanisms across the Easter Egg weevils are diverse and highly plastic across closely related species with features appearing at multiple independent times across their phylogeny. This work lays a foundation for a better understanding of the various forms of quasi-ordered and ordered diamond photonic crystal within arthropods.


Assuntos
Besouros , Nanoestruturas , Gorgulhos , Animais , Besouros/química , Diamante , Nanoestruturas/química , Fótons
13.
J Am Chem Soc ; 143(45): 18859-18863, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735137

RESUMO

Covalent mechanophores display the cleavage of a weak covalent bond when a sufficiently high mechanical force is applied. Three different covalent bond breaking mechanisms have been documented thus far, including concerted, homolytic, and heterolytic scission. Motifs that display heterolytic cleavage typically separate according to non-scissile reaction pathways that afford zwitterions. Here, we report a new mechanochromic triarylmethane mechanophore, which dissociates according to a scissile heterolytic pathway and displays a pronounced mechanochromic response. The mechanophore was equipped with two styrenylic handles that allowed its incorporation as a cross-linker into poly(N,N-dimethylacrylamide) and poly(methyl acrylate-co-2-hydroxyethyl acrylate) networks. These materials are originally colorless, but compression or tensile deformation renders the materials colored. By combining tensile testing and in situ transmittance measurements, we show that this effect is related to scissile cleavage leading to colored triarylmethane carbocations.

14.
Macromol Rapid Commun ; 42(24): e2100522, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523759

RESUMO

Approaches that enable the preparation of robust polymeric photonic particles are of interest for the development of nonfading and highly reflective pigments for applications such as paints and display technologies. Here, the preparation of photonic particles that display structural color in both, aqueous suspension and the dry solid state is reported. This is achieved by exploiting the confined self-assembly of a supramolecular comb-like block copolymer (BCP) that microphase separates into a well-ordered lamellar morphology with dimensions that promote a photonic bandgap in the visible range. The comb-like BCP is formed by robust ionic interactions between poly(styrene-b-4-vinyl-pyridine) (PS-b-P4VP) BCP and dodecylbenzene sulfonic acid (DBSA), which selectively interacts with P4VP blocks. The components are combined in chloroform, and an aqueous emulsion is prepared. Evaporation of the organic solvent leads to the formation of solid microparticles with an onion-like 3D morphology. These photonic pigments display brilliant colors with reflectance spectra featuring pronounced optical bandgaps across the entire visible wavelength range with a peak reflectivity of 80-90%.

15.
Small ; 17(44): e2103061, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558188

RESUMO

Polymers are essential components of many nanostructured materials. However, the refractive indices of common polymers fall in a relatively narrow range between 1.4 and 1.6. Here, it is demonstrated that loading commercially-available polymers with large concentrations of a plant-based pigment can effectively enhance their refractive index. For polystyrene (PS) loaded with 67 w/w% ß-carotene (BC), a peak value of 2.2 near the absorption edge at 531 nm is achieved, while maintaining values above 1.75 across longer wavelengths of the visible spectrum. Despite high pigment loadings, this blend maintains the thermoforming ability of PS, and BC remains molecularly dispersed. Similar results are demonstrated for the plant-derived polymer ethyl cellulose (EC). Since the refractive index enhancement is intimately connected to the introduction of strong absorption, it is best suited to applications where light travels short distances through the material, such as reflectors and nanophotonic systems. Enhanced reflectance from films is experimentally demonstrated, as large as sevenfold for EC at selected wavelengths. Theoretical calculations highlight that this simple strategy can significantly increase light scattering by nanoparticles and enhance the performance of Bragg reflectors.


Assuntos
Nanopartículas , Nanoestruturas , Polímeros , Poliestirenos , Refratometria
16.
ACS Appl Mater Interfaces ; 13(20): 23481-23488, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974394

RESUMO

Light plays paramount functions for living beings in nature. In addition to color, the polarization of light is used by many animals for navigation and communication. In this study, we describe the light polarizing role of special nanostructures coating cuticular surfaces of diverse arthropods. These structures are built as parallel nanoscale ridges covering the eyes of the sunlight-navigating spider Drassodes lapidosus and of the water pond-swarming black fly Simulium vittatum, as well as the light-emitting abdominal lantern of the firefly Aquatica lateralis. Exact topography and dimensions of the parallel nanoridges provide different light polarizing efficiencies and wavelength sensitivity. Optical modeling confirms that the nanoscale ridges are responsible for the spectral polarization dependency. Co-opting from our recent work on the self-assembly of Drosophila corneal nanostructures, we engineer arthropod-like parallel nanoridges on artificial surfaces, which recapitulate the light polarization effects. Our work highlights the fundamental importance of nanocoatings in arthropods for the light polarization management and provides a new biomimetic approach to produce ordered nanostructures under mild conditions.


Assuntos
Materiais Biomiméticos/química , Biomimética/instrumentação , Modelos Biológicos , Nanoestruturas/química , Óptica e Fotônica/instrumentação , Animais , Bioengenharia , Olho Composto de Artrópodes/química , Córnea/química , Córnea/fisiologia , Drosophila , Vaga-Lumes , Luz , Aranhas
17.
Molecules ; 26(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924921

RESUMO

Copper complexes have shown great versatility and a wide application range across the natural and life sciences, with a particular promise as organic light-emitting diodes. In this work, four novel heteroleptic Cu(I) complexes were designed in order to allow their integration in advanced materials such as metallopolymers. We herein present the synthesis and the electrochemical and photophysical characterisation of these Cu(I) complexes, in combination with ab initio calculations. The complexes present a bright cyan emission (λem ~ 505 nm) in their solid state, both as powder and as blends in a polymer matrix. The successful synthesis of metallopolymers embedding two of the novel complexes is shown. These copolymers were also found to be luminescent and their photophysical properties were compared to those of their polymer blends. The chemical nature of the polymer backbone contributes significantly to the photoluminescence quantum yield, paving a route for the strategic design of novel luminescent Cu(I)-based polymeric materials.

18.
ACS Appl Mater Interfaces ; 13(7): 9232-9238, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570923

RESUMO

A range of plants developed leaves, the surfaces of which prevent or diminish insect adhesion due to their microscopic topography. Well known examples include the leaves of the lychee tree (Litchi chinensis). Here, we report a method to coat substrates with ethyl cellulose microparticles that exhibit wrinkled surfaces, resulting in surface morphologies that closely resemble those of insect repelling plants, i.e., Litchi chinensis. The microparticles were prepared by electrospraying, a method that allowed tuning of the particle size and surface morphology. By measuring the traction forces of Colorado potato beetles walking on these surfaces, the wrinkly microsphere parameters were optimized, resulting in biomimetic surfaces that surpass the antiadhesive properties of the biological role model. This study may pave the way to sustainable, nontoxic insecticide replacements.


Assuntos
Celulose/análogos & derivados , Litchi/química , Folhas de Planta/química , Adesividade/efeitos dos fármacos , Animais , Celulose/química , Celulose/farmacologia , Besouros , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
20.
Curr Biol ; 30(19): R1078-R1080, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022238

RESUMO

The use of visible colours as honest signals to attract seed-dispersers is a well-known property of fruits. While most of these colours are due to pigments, it has now been discovered that the evergreen Viburnum tinus shrubs display their edible and nutritious fruit with a blue structural colour based on lipid inclusions in the epidermal cells.


Assuntos
Viburnum , Cor , Frutas , Lipídeos , Pigmentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...